Publications

Spatiotemporal active phase evolution of CO2 electrocatalysts

Juwon Kim, Si Young Lee, Se-Jun Kim, Bonho Koo, Jinkyu Chung, Danwon Lee, Subin Choi, Sungjae Seo, Karl Adrian Gandioco, Namdong Kim, Hyun-Joon Shin, Keun Hwa Chae, Da Hye Won, Matthew A. Marcus, Shu-Chih Haw, Daan Hein Alsem, Norman J. Salmon, Byoung Koun Min, Hyungjun Kim*, Yun Jeong Hwang*, and Jongwoo Lim*, (under revision)

2023

122. Effect of Sulfur-Derived Solid Electrolyte Interphase on Li-mediated Nitrogen Reduction

Chaeeun Lim, Dongkyu Kim, Mingyun Kim, Hyeju Yun, Dongwoo Shin, Yun Jeong Hwang, Hyeyoung Shin, and Kijung Yong*, ACS Energy Lett. 2023, 8, 11, 4875–4884.  (doi.org/10.1021/acsenergylett.3c02038 )

121. Nanocluster surface microenvironment modulates electrocatalytic CO2 Reduction

Seungwoo Yoo, Suhwan Yoo, Guocheng Deng, Fang Sun, Kangjae Lee, Hyunsung Jang, Chan Woo Lee, Xiaolin Liu, Junghwan Jang, Qing Tang*,  Yun Jeong Hwang*, and Taeghwang Hyeon*, and, Megalamane S. Bootharaju*, Adv. Mater. 2023. (accepted)

120. Copper Doping Boosts Electrocatalytic CO2 Reduction of Atomically Precise Gold Nanoclusters

Guocheng Deng, Hyewon Yun, Megalamane S. Bootharaju*, Fang Sun, Kangjae Lee, Xiaolin Lu, Seungwoo Yoo, Qing Tang*,  Yun Jeong Hwang*, and Taeghwang Hyeon*,  J. Am. Chem. Soc., 2023. 145, 50, 27407–27414 , (DOI: 10.1021/jacs.3c08438)

119. Unlocking the Potential of Sub-Nanameter Pd Catalysts for Electrochemical Hydrogen Peroxide Production

Ji Sik Choi, Suhwan Yoo, Ezra S. Koh, Raquel Aymerich-Armengol, Christina Scheu, Guilherme V. Fortunato, Marcos R. V. Lanza, Yun Jeong Hwang*, and Marc Ledendecker*,  Adv. Mater. Interfaces, 2023, 2300647, (DOI: 10.1002/admi.202300647)

118. Probing Cation Effects on *CO intermediates from Electroreduction of CO2 through Operando Raman Spectroscopy

Si Young Lee, Jimin Kim, Gwangsu Bak, Eunchong Lee, Dayeon Kim, Suhwan Yoo, Jiwon Kim, Hyewon Yun, and Yun Jeong Hwang*J. Am. Chem. Soc., 2023. 145, 42, 23068–23075. (DOI: 10.1021/jacs.3c05799)

117. Techno-economic analysis and life-cycle assessment of the electrochemical conversion process with captured CO2 in an amine-based solvent 

Suhyun Lee, Woong Choi, Jae Hyung Kim, Sohyeon Park, Yun Jeong Hwang*, and Jonggeol Na*,  Green Chem., 2023, 25, 10398-10414 . (DOI: 10.1039/d3gc02329j

116. Electro-assisted methane oxidation to formic acid via in-situ cathodically generated H2O2 under ambient conditions

Jiwon Kim, Jae Hyung Kim, Cheoulwoo Oh, Hyewon Yun, Eunchong Lee, Hyung-Suk Oh, Jong Hyeok Park*, and Yun Jeong Hwang*, Nat. Commun., 2023, 14, 4704. Front Cover article (DOI: 10.1038/s41467-023-40415-6

115. Electrochemical Biomass Valorization of Furfural to Maleic Acid by Modulating Selectivity with Bi-doped Lead Oxide

Eunchong Lee, Jae Hyung Kim, Juhyung Choi, Yewon Hong, Dongwoo Shin, Hyewon Yun, Jimin Kim, Gwangsu Bak, Seongin Hong, and Yun Jeong Hwang*,  J. Mater. Chem. A, 2023, 11, 16559-16569, Front Cover article, (DOI: 10.1039/D3TA00114H

114. Atomic arrangement of AuAg alloy on carbon support enhances electrochemical CO2 reduction in membrane electrode assembly

Hyewon Yun, Woong Choi, Dongwoo Shin, Hyung-Suk Oh, and Yun Jeong Hwang*, ACS Catal., 2023, 13, 13, 9302-9312. (DOI: 10.1021/acscatal.3c01044

113. Synergistic effect of Pt-loaded Co-N-C electrocatalysts for hydrogen evolution reaction in alkaline conditions

Seongin Hong, Jae Hyung Kim, Dongwoo Shin, Gwangsu Bak, Daehee Jang, Won Bae Kim, and Yun Jeong Hwang*, Appl. Surf. Sci., 2023, 610, 155523 (DOI: 10.1016/j.apsusc.2022.155523)

112. Boosting electrocatalytic nitrate reduction reaction for ammonia synthesis by plasma-induced oxygen vacancies over MnCuOx? 

Daehee jang, Junbeom Maeng, Jihhoon Kim, Hyunsu Han, Gwan Hyeon Park, Jungseub Ha, Dongwoo Shin, Yun Jeong Hwang , Won Bae Kim*, Appl. Surf. Sci., 2023, 610, 155521 (DOI: 10.1016/j.apsusc.2022.155521)

111. Three-dimensional imaging performance of photoelectrochemical cells

Ji-Hoon Kang, Sungwon Choi, Yun Jeong Hwang, Do kyung Hwang,and Min-Chul Park*, Opt. Lett., 2023, 48, 2, 347-350 (DOI: 10.1364/OL.476115)

110. Role of defect density in the TiOx protective layer of the n-Si photoanode for efficient photoelectrochemical water splitting 

Songwoung Hong, Woo Lee, Yun Jeong Hwang, Seungwoo Song, Seungwook Choi, Hyun Rhu, Jeong Hyun Shim, and Ansoon Kim*, J. Mater. Chem. A, 2023, 11, 3987-3999 (DOI: 10.1039/d2ta07082k)

109. Tailoring electrochemical CO2 reduction via substrate-induced gas diffusion

Younghyun Chae, Kyeongsu Kim, Hyewon Yun, Dongjin Kim, Wonsang Jung, Yun Jeong Hwang, Ung Lee, Dong Ki Lee, Byoung Koun Min, Woong Choi* and Da Hye Won*, J. Mater. Chem. A, 2023, 11, 7025-7033 (DOI: 10.1039/d3ta00617d)

108. Body-Centered-Cubic-Kernelled Ag15Cu6 Nanocluster with Alkynyl Protection: Synthesis, Total Structure, and CO2 Electroreduction

Guocheng Deng, Jimin Kim, Megalamane S. Bootharaju, Fang Sun, Kangjae Lee, Qing Tang*, Yun Jeong Hwang*, and Taeghwan Hyeon*, J. Am. Chem. Soc., 2023, 145, 6, 3401-3407 (DOI: 10.1021/jacs.2c10338)

Women Scientists at the Forefront of Energy Research: A Virtual Issue, Part 5

Virginia H. Keller, Sergey Shmakov,  and Prashant V. Kamat*, ACS Energy Lett., 2023, 8, 328-342 (DOI: 10.1021/acsenergylett.2c02727

(Yun Jeong Hwang Selected as Women Scientists at the Forefront of Energy Research)

2022

107. 2022 Roadmap on Low Temperature Electrochemical CO2 Reduction / 9. What can in situ spectroscopy tell us about adsorbed intermediates? 

Woong Hee Lee, Hyung-Suk Oh, Yun Jeong Hwang *, J. Phys. Energy, 2022, 4, 042003 (DOI: 10.1088/2515-7655/ac7823)

106. Enhancing electrochemical nitrate reduction to ammonia selectivity on copper palladium alloy with low overpotential by promoting hydrogenation of intermediates

Wonsang Jung, Younghyun Chae, Young-jin Ko, Unghee Lee, Keunhwa Chae, Hyung-suk Oh, Ung Lee, Dong Ki Lee, Byoung Koun Min, Hyeyoung Shin*, Yun Jeong Hwang*, and Da Hye Won*, J. Mater. Chem. A., 2022, 10, 23760-23769 (DOI: 10.1039/D2TA06316F)


105. The insensitive cation effect on single atom Ni catalyst allows selective electrochemical conversion of captured CO2 in universal media 

Jae Hyung Kim, Hyunsung Jang, Gwangsu Bak, Woong Choi, Hyewon Yun, Eunchong Lee, Dongjin Kim, Jiwon Kim, Si Young Lee, and Yun Jeong Hwang*, Energy Environ. Sci., 2022, 15, 4301 (DOI: 10.1039/D2EE01825J)

 

104. Microenvironments of Cu catalysts in zero-gap membrane electrode assembly for efficient CO2 electrolysis to C2+ products

Woong Choi, Yongjun Choi, Hyewon Yun, Wongsang Jung, Woong Hee Lee, Hyung-Suk Oh, Da Hye Won, Jonggeol Na*, Yun Jeong Hwang*, J. Mater. Chem. A., 2022, 10, 10363-10372 (DOI: 10.1039/D1TA10939A)

103. Electrochemical conversion of CO2 to value-added chemicals over bimetallic Pd-based nanostructures: Recent progress and emerging trends

Dang Le Tri Nguyen, Tung M. Nguyen, Si Young Lee, Jiwon Kim, Soo Young Kim, Quyet Van Le, Rajender S. Varma, Yun Jeong Hwang*, Environ. Res., 2022, 211, 113116 (DOI:10.1016/j.envres.2022.113116)

102. Microfluidics-Assisted Synthesis of Hierarchical Cu2O Nanocrystal as C2-Selective CO2 Reduction Electrocatalyst

Minki Jun, Changmo Kwak, Si Young Lee, Jinwhan Joo, Ji Min Kim, Do Jin Im, Min Kyung Cho, Hionsuck Baik, Yun Jeong Hwang*, Heejin Kim*, Kwangyeol Lee*, Small Methods, 2022, 2200074 (DOI: 10.1002/smtd.202200074)

101. Origin of Hydrogen Incorporated into Ethylene during Electrochemical CO2 Reduction in Membrane Electrode Assembly

Woong Choi, Seongho Park, Wonsang Jung, Da Hye Won, Jonggeol Na*, and Yun Jeong Hwang*, ACS Energy Lett., 2022, 7, 939-945 (Selected as Front Cover Article), (DOI: 10.1021/acsenergylett.1c02658)



2021


100. Electrocatalytic reduction of low concentration CO2 gas in a membrane electrode assembly electrolyzer

Dongjin Kim, Woong Choi, Hee Won Lee, Si Young Lee, Yongjun Choi, Dong Ki Lee, Woong Kim, Ung Lee*, Yun Jeong Hwang*, Da Hye Won* ACS Energy Lett. 2021, 6, 3488−3495


99. Material strategies in the electrochemical nitrate reduction reaction to ammonia production

Jung, W.;  Hwang, Y. J.* Mater. Chem. Front. (2021), (DOI: 10.1039/d1qm00456e)


98. High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells

Woong Hee Lee, Young-Jin Ko, Jung Hwan Kim, Chang Hyuck Choi, Keun Hwa Chae, Hansung Kim, Yun Jeong Hwang, Byoung Koun Min, Peter Strasser, Hyung-Suk Oh Nat. Commun., 12,  4271 (2021) 


97. New strategies for economically feasible CO 2 electroreduction using a porous membrane in zero-gap configuration

WH Lee, K Kim, C Lim, YJ Ko, YJ Hwang, BK Min, U Lee, HS Oh; J. Mater. Chem. A, 2021, 9, 16169-16177


96. Designing Atomically Dispersed Au on Tensile-Strained Pd for Efficient CO2 Electroreduction to Formate

Bok, J.+; Lee, S. Y.+; Lee, B. -H.+; Kim, C.+; Nguyen, D. L. T.; Kim, J.; Jung, E.; Lee, C. W.; Jung, Y.; Lee, H. S.; Kim, J.; Lee, K.; Ko, W.; Kim, Y. S.; Cho, S. -P.; Yoo, J. S.*; Hyeon, T.*; Hwang, Y. J.*, J. Am. Chem. Soc., 2021, 143, 5386-5395. (Cover Article)


95. Electrocatalytic methane oxidation on Co3O4- incorporated ZrO2 nanotube powder

Oh, C.+; Kim, J.; Hwang, Y. J.; Ma, M.; Park, J. H.*, Appl. Catal. B., 2021, 283, 119653.


94. Understanding morphological degradation of Ag nanoparticle during electrochemical CO2 reduction reaction by identical location observation

Yun, H.+; Kim, J.; Choi, W.; Han, M. H.; Park, J. H.; Oh, H. -S.; Won, D. H.; Kwak, K.*; Hwang, Y. J.*, Electrochim. Acta, 2021, 371, 137795.


93. Highly selective and stackable electrode design for gaseous CO2 electroreduction to ethylene in a zero-gap configuration

Lee, W. H.+; Lim, C. W.; Lee, S. Y.; Chae, K. H.; Choi, C. H.; Lee, U.; Min, B. K.; Hwang, Y. J.*; Oh, H. -S.*, Nano Energy, 2021, 84, 105859.



2020


92. Time-resolved observation of C-C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction

Kim, Y.+; Par, S.+; Shin, S.J.; Choi, W.; Min, B. K.; Kim, H.; Kim, W.*; Hwang, Y. J.*, Energy Environ. Sci., 2020, 13, 4301-4311. (I.F. 30.289)

(2020 Energy and Environmental Science HOT Articles)


91. Thermal Transformation of Molecular Ni2+–N4 Sites for Enhanced CO2 Electroreduction Activity

Sa, Y. J.+; Jung, H.+; Shin, D.; Jeong, H. Y.; Ringe, S.; Kim, H.*; Hwang, Y. J.*; Joo, S. H. *, ACS Catal., 2020, 10, 10920-10931.


90. Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction

Sa, Y. J.+; Lee, C. W.+; Lee, S. Y.+; Na, J.; Lee, U.*; Hwang, Y. J.* , Chem. Soc. Rev., 2020, 49, 6632-6665. (I.F. 42.846)


89. Highly Selective and Scalable CO2 to CO -Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration

Lee, W. H.; Ko, Y.; Choi, Y.; Lee, S. Y.; Choi, C. H.; Hwang, Y. J.; Min, B. K.; Strasser, P.*; Oh, H.*, Nano Energy, 2020, 76, 105030.


88. Electroactivation-induced IrNi nanoparticles under different pH conditions for neutral water oxidation

Lee, W. H.#; Yi, J.#; Nong, H. N.; Strasser, P.; Chae, K. H.; Min, B. K.; Hwang, Y. J.*; Oh, H.*, Nanoscale, 2020, 12, 14903-14910.


87. A perspective on practical solar to carbon monoxide production devices with economic evaluation

Chae, S. Y.; Lee, S. Y.; Han, S. G.; Kim, H.; Ko, J.; Park, S.; Joo, O.S.; Kim, D.; Kang, Y.; Lee, U.*; Hwang, Y. J.*; Min, B. K.*, Sustain. Energy Fuels, 2020, 4, 199-212.


86. Carbon-Supported IrCoOx nanoparticles as an efficient and stable OER electrocatalyst for practicable CO2 electrolysis

Lee, W. H.; NhanNong, H.; Choi, C. H.; Chae, K. H.; Hwang, Y. J.; Min, B. K.; Strasser, P.*; Oh, H.*, Appl. Catal. B., 2020, 269, 118820.


85. Potential Link between Cu Surface and Selective CO2 Electroreduction: Perspective on Future Electrocatalyst Designs

Tomboc, G. M.; Choi, S.; Kwon, T.; Hwang, Y. J.*;  Lee, K.*, Adv. Mater. 2020, 1908398. (I.F. 27.398)


84. Catalyst design strategies for stable electrochemical CO2 reduction reaction

Choi, W.;  Won, D. H.; Hwang, Y. J.*, J. Mater. Chem. A, 2020, 8, 15341-15357.


83. Controlling C2+ Products Selectivity of Electrochemical CO2 Reduction on Electrosparyed Cu Catalyst

Lee, S. Y.; Chae, S. Y.; Jung, H.; Lee, C.W.; Nguyen, D. L. T.; Oh, H. -S.; Min, B. K.; Hwang, Y. J.*, J. Mater. Chem. A, 2020, 8, 6210-6218


82. Mass transport control by surface graphene oxide for selective CO production from electrochemical CO2 reduction

Nguyen, D. L. T.+; Lee, C.W.+; Na, J.+; K, M. -C.; Nguyen, D. K. T.; Lee, S. Y.; Sa, Y. J.; Won, D. H.; Oh, H. -S.; Kim, H.; Min, B. K.; Han, S. S.; Lee, U.*; Hwang, Y. J.*, ACS Catal., 2020, 10, 5, 3222-3231



2019


81. General Technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation

Na, J. ; Seo, B.; Kim, J.; Lee, C. W.; Lee, H.; Hwang, Y. J.; Min, B. K.; Lee, D. K.; Oh, H.*; Lee, U.*, Nat. Commnun., 2019, 10, 5193.


80. Progress in development of electrocatalyst for CO2 conversion to selective CO production

Nguyen, D. L. T; Kim, Y.; Hwang, Y. J.*; Won, D. H.*, Carbon Energy, 2019, 1, 1-27.


79. Charge Transportation at Cascade Energy Structure Interface of CuInxGa1-xSeyS2-y/CdS/ZnS for Spontaneous Water Splitting

Chae, S. Y.; Park, S. J.; Min, B. K.; Hwang, Y. J.; Joo, O. S.*, Electrochimica Acta, 2019, 297, 633-640


78. Cyclic two-step electrolysis for stable electrochemical conversion of carbon dioxide to formate

Lee, C. W.; Cho, N. H.; Nam, K. T.*; Hwang, Y. J.; Min, B. K., Nat. Commun., 2019, 10, 3919


77. Achieving tolerant CO2 electro-reduction catalyst in real water matrix

Won, D. H.; Shin, H.; Chung, M. W.; Jung, H.; Chae, K. H.; Oh, H. -S.; Hwang, Y. J.*; Min, B. K.*, Appl. Catal. B., 2019, 258, 117961


76. Turning Harmful Deposition of Metal Impurities into Activation of Nitrogen-Doped Carbon Catalyst toward Durable Electrochemical CO2 Reduction

Kim, C.; Choe, Y.-K.; Won, D. H.; Lee, U.; Oh, H. -S.; Lee, D. K.; Choi, C. H.; Yoon, S.; Kim, W.; Hwang, Y. J.*; Min, B. K.*, ACS Energy Lett., 2019, 4, 2343-2350


75. Metal-Oxide Interfaces for Selective Electrochemical CC Coupling Reactions

Lee, C. W.; Shin, S-J.; Jung, H.; Nguyen, D. L. T.; Lee, S. Y.; Lee, W. H.; Won, D. H.; Kim, M.-G.; Oh, H. -S.; Jang, T.; Kim, H.*;  Min, B. K.; Hwang, Y. J.*, ACS Energy Lett., 2019, 4, 2241-2248


74. Effect of Pt introduced on Ru-based electrocatalyst for oxygen evolution activity and stability

Yi, J; Lee, W. H.; Choi, C. H.; Lee, Y.; Park, K. S.; Min, B. K.; Hwang, Y. J.*; Oh, H. -S.*, Electrochem. Commun., 2019, 104, 106469


73. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C-C coupling from CO2 reduction reaction

Jung, H; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H.-S; Min, B. K.; Hwang, Y. J.*, J. Am. Chem. Soc., 2019, 141, 4624-4633



2018


72. New challenges of electrokinetic studies in investigating the reaction mechanism of electrochemical CO2 reduction

Lee, C. W. ; Cho, N. H. ; Im, S. W.; Jee, M. S. ; Hwang, Y. J.* ; Min, B. K*. ; Nam, K. T*.  J. Mater. Chem. A , 2018, 6, 14043-14057


71. Comparative study of catalytic activities among transition metal-doped IrO2 nanoparticles

Lee, H.; Kim, J. Y.; Lee, S. Y.; Hong, J. A.; Kim, N.; Baik, J.; Hwang, Y. J.* Scientific Reports, 2018, 8, 16777


70. Mixed Copper States in Anodized Cu Electrocatalyst for Stable and Selective Ethylene Production from CO2 Reduction

Lee, S. Y.; Jung, H.; Kim, N.-K.; Oh, H.-S.; Min, B. K.; Hwang, Y. J.* , J. Am. Chem. Soc., 2018, 140, 8681–8689


69. Effect of halides on nanoporous Zn-based catalysts for highly efficient electroreduction of CO2 to CO

Nguyen, D. L. T.; Jee, M. S.; Won, D. H.; Oh, H.-S.; Min, B. K.; Hwang, Y. J.*, Catal. Commun., 2018, 114, 109–113


68. Insight into water oxidation activity enhancement of Ni-based electrocatalysts interacting with modified carbon supports

Lee, S.Y.; Jung, H.; Chae, S.Y.; Oh, H.-S.; Min, B.K; Hwang, Y. J.* Electrochimica Acta, 2018, 281, 684–691


67. Understanding Selective Reduction of CO2 to CO on Modified Carbon Electrocatalysts

Jung, H; Lee, S.Y.; Won, D.H.; Kim, K.-J.; Chae, S.Y.; Oh, H.-S.; Min, B.K,; Hwang, Y. J.* ChemElectroChem, 2018, 5, 1615–1621


66. Toward an Effective Control of the H2 to CO Ratio of Syngas through CO2 Electroreduction over Immobilized Gold Nanoparticles on Layered Titanate Nanosheets

Mota,F. Marques; Nguyen, D.L.T,;Lee, JE; Piao,H; Choy, JH; Hwang, Y. J.* and Kim,D.H.*, ACS Catal.  2018, 8(5), 4364–4374


65. A highly efficient Cu(In,Ga)(S,Se)2 photocathode without a heteromaterials overlayer for solarhydrogen production

Kim, B.; Park, G.S.; Chae, S.Y.; Kim, M.K.; Oh, H.-S.; Hwang, Y. J.; Kim, W.*; Min, B.K.*, Scientific Reports, 2018, 8, 5182


64. Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide to nickel hydroxide in an oxygen evolution reaction

Lee, M; Oh, H.-S.; Cho, M.K.; Ahn, J.-P.;  Hwang, Y. J.*; Min, B.K.* , Applied Catalysis B: Environmental, 2018, 233, 130–135


63. Achieving 14.4% Alcohol-Based Solution-Processed Cu(In,Ga)(S,Se)2 Thin Film Solar Cell through Interface Engineering

Park, G.S.; Chu, V.B.; Kim, B.W.; Kim, D.-W.; Oh, H.-S.; Hwang, Y. J.; Min, B.K.*, ACS Appl. Mater. Interfaces, 2018, 10, 9894–9899


62. How do plants see the world? – UV imaging with aTiO2 nanowire array by artificial photosynthesis

Kang, J.-H.; Leportier, T.; Park, M.-C.*; Han, S.G.; Song, J.-D.; Ju, H.; Hwang, Y. J.; Ju, B.-K.; Poon, T.-C.*, Nanoscale, 2018, 10, 8443–8450


61. Charge separation properties in Ta3N5 photoanodes synthesized via a simple metal-organic-precursor decomposition process

Han, S.G.; Chae, S.Y.; Lee, S.Y.; Min, B. K.;Hwang, Y. J.* Phys. Chem. Chem. Phys. 2018, 20, 2865–2871



2017


60. Selective CO2 Reduction on Zinc Electrocatalyst: The Effect of Zinc Oxidation State Induced by Pretreatment Environment

Nguyen, D. L. T.; Jee, M. S.; Won, D. H.; Jung, H.; Oh, H.-S.; Min, B. K.; Hwang, Y. J.*, ACS Sustainable Chem. Eng., 2017, 5 (12), 11377–11386


59. Surface morphology dependent electrolyte effects on gold-catalyzed electrochemical CO2 reduction

Kim, H. R.; Park, H. S.; Hwang, Y. J.*;  Min,B. K.*,  J. Phys. Chem. C., 2017, 121 (41), 22637–22643


58. Self-generated and degradation-resistive cratered stainless steel electrocatalyst for efficient water oxidation in a neutral electrolyte

Lee, M. H.; Jeon, H. S.; Lee, S. Y.; Kim H. R.; Sim, S. J.; Hwang, Y. J.*;  Min,B. K.*,  J. Mater. Chem. A , 2017,5, 19210-19219


57. Synthesis of the solution-processed wide band-gap chalcopyrite CuGa(S,Se)2 thin film and its application to photovoltaics

Park, G. S.; Park, S. J.; Jeong, J. S.; Chu, V. B.; Hwang, Y. J.; Min,B. K.*,  Thin Solid Films, 2017, 621, 70-75


56. 3-D architecture between indium tin oxide nano-rods and a solution processed CuInGaS2 absorber layer for thin film solar cells

Chu, V. B.; Kim, C. S.; Park, G. S.; Lee, Y. K.; Hwang, Y. J.; Do, Y. R.*; Min,B. K.**,  Thin Solid Films, 2017, 636, 506-511


55. Liquid CO2-based coating for dense CuInxGa1−xS2film fabrication

Nursanto, E. B.; Park, S. J.; Hwang, Y. J.*; Kim, J. H.*; Min,B. K*.,  J. of Supercritical Fluids, 2017, 120, 453-459


54. Facile CO2 Electro-Reduction to Formate via Oxygen Bidentate Intermediate Stabilized by High-Index Planes of Bi Dendrite Catalyst

Koh, J. H.; Won, D. H.; Eom, T.; Kim, N. K.; Jung, G. D.; Kim, H. G.*; Hwang, Y. J.*; Min,B. K.* ACS Catal., 2017, 7, 5071−5077


53.  Insight into Charge Separation in WO3/BiVO4 Heterojunction for Solar Water Splitting

Chae, S. Y.; Lee, C. S.; Jung, H.; Joo, O.-S.; Min,B. K.; Kim, J. H.*; Hwang, Y. J.*, ACS Appl. Mater. Interfaces, 2017, 9(23), 19780-19790


52. Insight into Electrochemical CO2 Reduction on Surface-Molecule-Mediated Ag Nanoparticles

Kim, C.+; Eom, T.+; Jee, M. S.; Jung, H.; Kim, H.*; Min, B. K*.; Hwang, Y. J.* , ACS Catal. 2017, 7, 779-785


51. Surface Analysis of N-doped TiO2 Nanorods and their Enhanced Photocatalytic Oxidation Activity

Hwang, Y.J.; Yang, S.; Lee, H.* Appl. Catal. B Environ., 2017, 204, 209-215


50. Stable Surfce Oxygen on Nanostructured Silver for Efficient CO2 Electroreduction 

Jee, M. S.; Kim, H. R.; Jeon, H. S.; Chae, G. H; Cho, J. H; Min, B. K.*;  Hwang, Y. J.*Catalysis Today, 2017, 288 , 48–53



2016


49. Enhanced Photocurrents with ZnS Passivated Cu(In,Ga)(Se,S)2Photocathodes Synthesized Using a Non-vacuum Process for Solar Water Splitting

Chae, S. Y.; Park, S. J.; Han, S. G.; Jung, H.; Kim, C.-W.; Jeong, C.; Joo, O.-S.; Min,B. K*.; Hwang, Y. J.* J. Am. Chem. Soc, 2016, 138, 15673-15681


48. Contributors to Enhanced CO2 Electro-Reduction Activity and Stability in a Nanostructured Gold Electrocatalyst

Kim, H. R.; Jeon, H. S.; Jee, M. S.; Nursanto, E. B.; Singh, J. P.; Chae, G. H.; Hwang, Y. J.*; Min, B. K.* ChemSusChem, 2016, 9, 2097-2102


47. Water Oxidation by Manganese Oxide Electrocatalytic Films Synthesized by Chemical Solution Deposition Method

Jeon, H. S.; Ahn, S. J.; Jee, M. S.; Yoon, S. S.; Hwang, Y. J.; Min, B. K.* J. Electrochem. Soc., 2016, 163, F3113-F3118


46. Tandem Architecture of Perovskite and  Cu(In,Ga)(S,Se)2 Created by Solution Processes for Solar Cell

Lee, M. H.; Park, S. J.; Hwang, Y. J.; Jun, Y. S.*; Min, B. K.*  Adv. Optical Mater 2016, 10, 1002


45. Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells

Chae, S. Y.; Park, S. J.; Joo, O.-S.; Jun, Y.; Min,B. K.; Hwang, Y. J.* Scientific Reports 2016, 6, 30868.


44. Spontaneous solar water splitting by DSSC/CIGS tandem solar cells

Chae, S. Y.; Park, S. J.;  Joo, O.-S.; Min,B. K.; Hwang, Y. J.*, Solar Energy 2016, 135, 821.


43. Photocatalytic Oxidation Activities of TiO2 Nanorod Arrays: A Surface Spectroscopic Analysis

Hwang, Y. J.; Yang, S.; Jeon, E. H.; Nho H. W.; Kim K.-J.; Yoon T.H.; Lee H.* Appl. Catal. B Environ. 2016, 180, 480-486.


42. Enhancement in Carbon Dioxide Reduction Activity and Stability on Nanostructured Silver Electrode and the Role of Oxygen

Jee, M. S.; Jeon, H. S.; Kim, C.; Lee, H.; Koh J. H.; Cho. J; Min, B. K.*; Hwang, Y. J.* Appl. Catal. B Environ. 2016, 180, 372-378.


41. Electrospun BiVO4 photoanode on a transparent conducting substrate for solar water oxidation

Jung, H.; Chae S. Y.; Min, B. K.; Hwang Y. J.*  Catal. Commun. 2016, 75, 18-22. 


40. D-sorbitol-induced phase control of TiO2 nano-particles and its application for dye-sensitized solar cells

Shaikh, S. F.; Mane, R. S.;  Hwang, Y. J.*; Joo, O.-S* Scientific Reports, 2016, 6, 20103


39. Gold catalyst reactivity for CO2 electro-reduction: From nano particle to layer

Nursanto, E. B.; Jeon, H. S.; Kim, C.; Jee, M. S.; Koh, J. H.; Hwang, Y. J.*, Min B. K.* Catalysis Today ,2016, 260, 107–111.



2015


38. Design of a Monolithic Photoelectrochemical Tandem Cell for Solar Water Splitting with a Dye-sensitized Solar Cell and WO3/BiVO4 Photoanode

Chae S. Y.; Jung, H.; Joo O.-S; Hwang Y. J.* Rapid Communication in Photoscience, 2015, 4,82-85.


37. Achieving Selective and Efficient Electrocatalytic Activity for CO2 Reduction Using Immobilized Silver Nanoparticles

Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend C. M.; Min B. K.; Hwang, Y. J.* J. Am. Chem. Soc. 2015, 137, 13844-13850.


36. A simple chemical solution deposition of Co3O4 thin film electrocatalyst for oxygen evolution reaction

Jeon, H. S.; Jee, M. S.; Kim, H.; Ahn, S. J.; Hwang, Y. J.; Min, B. K.* ACS Appl. Mater. Interfaces 2015, 7, 24550-24555.


35. Effect of the Si/TiO2/BiVO4 Heterojunction on the Onset Potential of Photocurrents for Solar Water Oxidation

Jung, H.; Chae S. Y.; Shin, C.; Min, B. K.; Joo, O.-S; Hwang Y. J.* ACS Appl. Mater. Interfaces 2015, 7, 5788-5796.


34. Calcium carbonate electronic-insulating layers improve the charge collection efficiency of tin oxide photoelectrodes in dye-sensitized solar cells

Shaikh, S. F.; Mane, R. S.; Hwang, Y. J.*; Joo, O.-S.* Electrochim. Acta 2015, 167, 379-387.


33. Improved photoelectrochemical water oxidation kinetics using a TiO2 nanorod array photoanode decorated with graphene oxide in a neutral pH solution

Chae, S. Y.; Sudhagar, P.; Fujishima, A.; Hwang, Y. J.*.; Joo O.-S. Phys. Chem. Chem. Phys. 2015, 17, 7714-7719.


32. A Monolithic and Standalone Solar-Fuel Device Having Comparable Efficiency to Photosynthesis in Nature

Jeon, H. S.; Koh, J. H.; Park, S. J.; Jee, M. S.; Ko, D. H.; Hwang, Y. J.*; Min, B. K.* J. Mater. Chem. A 2015, 3, 5835-5842.


31. Oxygen Plasma Induced Hierarchically Structured Gold Electrocatalyst for Selective Reduction of Carbon Dioxide to Carbon Monoxide

Koh, J. H.; Jeon, H. S.; Jee, M. S.; Nursanto, E. B.; Lee, H.; Hwang, Y. J. *; Min, B. K.* J. Phys. Chem. C 2015, 119, 883−889.


30. Photo-Oxidation Activities on Pd-Doped TiO2 Nanoparticles: Critical PdO Formation Effect

Lee, H.; Shin, M.; Lee, M.; Hwang, Y. J.* Appl. Catal. B 2015, 165, 20–26.


29. Chalcogenization derived band-gap grading in solution processed CuInxGa1-x(Se,S)2 thin film solar cells 

Se Jin Park, Hyo Sang Jeon, Jinwoo Cho, Yun Jeong Hwang, Byoung Koun Min ACS Appl. Mater. Interfaces 2015, 7, 27391-27396.


28. A simple chemical route for composition graded Cu(In,Ga)S2 thin film solar cells: multi-stage paste coating

Se Jin Park, Hee Sang An, Jieun Kim, Hyo Sang Jeon, Yun Jeong Hwang, Jihyun Kim, Dong Wook Kim, Byoung Koun Min RSC Advances, 2015, 5, 103439-103444.


27. Monolithic DSSC/CIGS tandem solar cell fabricated by a solution process

Sung Hwan Moon, Se Jin Park, Sang Hoon Kim, Min Woo Lee, Jisu Han, Jin Young Kim, Honggon Kim, Yun Jeong Hwang, Doh-Kwon Lee, Byoung Koun Min Scientific Reports, 2015, 5, 8970. 



2014


26. Embedding Covalency into Metal Catalysts for Efficient Electrochemical Conversion of CO2

Lim, H. K.; Shin, H; Goddard, W. A.; Hwang, Y. J.; Min, B. K.; Kim, H.* J. Am. Chem. Soc. 2014, 136, 11355–11361.


25. Synthesis of Bi2WO6 Photoanode on Transparent Conducting Oxide Substrate with Low Onset Potential for Solar Water Splitting

Chae, S.Y.; Lee. E. S;Jung, H.; Hwang, Y. J.*; Joo O. S.* RSC Adv. 2014, 4, 24032–24037.


24. Role of HA Additive in Quantum Dot Solar Cell with Co[(bpy)3]2+/3+-Based Electrolyte

Chae, S.Y.; Hwang, Y. J.*; Joo O. S.* RSC Adv. 2014, 4, 26907–26911.


23. Morphology Control of One-dimensional Heterojunctions for Highly Efficient Photoanodes Used for Solar Water Splitting

Chae, S.Y.; Jung, H.; Jeon, H. S.; Min, B. K.;Hwang, Y. J.*; Joo O. S.* J. Mater. Chem. A 2014, 2, 11408–11416.


22. Uniform Deposition of Ternary Chalcogenide Nanoparticles onto Mesoporous TiO2 Film Using Liquid Carbon Dioxide-Based Coating

Nursanto, E. B.; Park, S. J.; Jeon, H. S.; Hwang, Y. J.; Kim, J.; Min, B. K. Thin Solid Films 2014, 565, 122–127.


21. Synthesis of Solution-Processed Cu2ZnSnSe4 Thin Films on Transparent Conducting Oxide Glass Substrates

Ismail, A.; Cho, J. W.; Park, S. J.; Hwang, Y. J.; Min, B. K. Bull. Korean Chem. Soc. 2014, 35, 1985-1988.


20. Transition Metal-Doped TiO2 Nanowire Catalysts for the Oxidative Coupling of Methane

Ynarti, R. T.; Lee, M.; Hwang, Y. J.; Choi, J.-W.; Suh, D. J.; Lee, J.; Kim, I. W., Ha, J.-M.* "" Cat. Comm. 2014, 50, 54-58.


19. Cocktails of Paste Coatings for Performance Enhancement of CuInGaS2 Thin-Film Solar Cells

An, H. S.; Cho, Y.; Park, S. J.; Jeon, H. S.; Hwang, Y. J.; Kim, D.-W.; Min, B. K.*  ACS Appl. Mater. Interfaces 2014, 6, 888–893.


18. Fabrication of Solution Processed 3D Nanostructured CuInGaS2 Thin Film Solar Cells

Chu, V. B.; Cho, J. W.; Park, S. J.; Hwang, Y. J.; Park, H. K.; Do, Y. R.; Min, B. K.* Nanotechnology 2014, 25, 125401.


17. Printable, Wide Band-Gap Chalcopyrite Thin Films for Power Generating Window Applications

Moon, S. H.; Park, S. J.; Hwang, Y. J.; Lee, D.-K.; Cho, Y.; Kim, D.-W.; Min, B. K.* Sci. Rep. 2014, 4, 4408.



2013


16. Cobalt Sulfide Thin Films for Counter Electrodes of Dye-Sensitized Solar Sells with Cobalt Complex Based Electrolytes

Chae, S. Y.; Hwang, Y. J.*; Choi, J. H.; Joo, O. S.* Electrochem. Acta 2013, 114, 745–749.


15. Influence of TiO2 Nanotube Morphology and TiCl4 Treatment on the Charge Transfer in Dye-Sensitized Solar Cells

Lee, S. H.; Chae, S. Y.; Hwang, Y. J.; Koo, K. K; Joo, O. S.* Appl. Phys. A 2013, 112, 733–737.


14. Enhanced Photoanode Properties of CdS Nanoparticle Sensitized TiO2 Nanotube Arrays by Solvothermal Synthesis

Kalanur, S. S.; Lee, S. H.; Hwang, Y. J.; Joo, O. S.* J. Photochem. Photobiol. A 2013, 259, 1–9.


13. Construction of Efficient CdS-TiO2 Heterojunction for Enhanced Photocurrent, Photostability, and Photoelectron Lifetimes

Kalanur, S. S.; Hwang, Y. J.; Joo, O. S.* J. Colloid Interface Sci. 2013, 402, 94–99.


12. Facile Growth of Aligned WO3 Nanorods on FTO Substrate for Enhanced Photoanodic Water Oxidation Activity

Kalanur, S. S.; Hwang, Y. J.; Chae, S. Y.; Joo, O. S.* J. Mater. Chem. A 2013, 1, 3479–3488.


11. Mesoporous Co3O4 as an Electrocatalyst for Water Oxidation

Tüysüz, H.; Hwang, Y. J.; Yang, P.* Nano Res. 2013, 6, 47–54.



~2012


10. Photoelectrochemical Properties of TiO2 Nanowire Arrays: A Study of the Dependence on Length and Atomic Layer Deposition Coating

Hwang, Y. J.; Hahn, C.; Liu, B.; Yang, P.* ACS Nano 2012, 6, 5060–5069.

Research Highlights in "Nanotechnology"


9. Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties

Hwang, Y. J.; Wu, C.; Hahn, C.; Jeong, H. E.; Yang, P.* Nano Lett. 2012, 12, 1678–1682.


8. Light-Induced Charge Transport within a Single Asymmetric Nanowire

Liu, C.; Hwang, Y. J.; (co-first authorship) Jeong, H. E.; Yang, P.* Nano Lett. 2011, 11, 3755–3758.


7. Epitaxial Growth of InGaN Nanowire Arrays For Light Emitting Diode

Hahn, C.; Zhang, Z.; Fu, A.; Wu, C. H.; Hwang, Y. J.; Gargas, D. J.; Yang, P.* ACS Nano 2011, 5, 3970–3976.


6. Atomic and Electronic Structure of Styrene on Ge (100)

Kim, D. H.; Hwang, Y. J.; Ryou, J.; Kim, S.; Hong, S.* Surf. Sci. 2011, 605, 1438–1444.

Research Highlights in "Nature Photonics", 2009, 3, 72–73


5. High Density n-Si/n-TiO2 Core/Shell Nanowire Arrays with Enhanced Photoactivity

Hwang, Y. J.; Boukai, A.; Yang, P.* Nano Lett. 2009, 9, 410–415.


4. Single Crystalline Mesoporous Silicon Nanowires

Hochbaum, A. I.; Gargas, D.; Hwang, Y. J.; Yang, P.* Nano. Lett. 2009, 9, 3550–3554.


3. Discrimination of Chiral Configurations: Styrene on Germanium (100)

Hwang Y. J.; Hwang, E.; Kim, D. H.; Kim, A.; Hong, S.; Kim, S.* J. Phys. Chem. C. 2009, 113, 1426–1432.


2. Bidentate Structures of Acetic Acid on Ge(100): The Role of Carboxyloxygen

Hwang E.; Kim, D. H.; Hwang, Y. J.; Kim, A.; Hong, S.; Kim, S.* J. Phys. Chem. C. 2007, 111, 5941–5945.


1. Chiral Attachment of Styrene Mediated by Surface Dimers on Ge(100)

Hwang Y. J.; Kim, A.; Hwang, E.; Kim, S.* J. Am. Chem. Soc. 2005, 127, 5016–5017.